OpenMath issues arising from Algebra Interactive

Arjeh M. Cohen

May 22, 2004

History of Algebra Interactive

'99 First edition, no OM
'O4 Second edition, with OM

Algebra Interactive II, New features

- OM objects
- Mathdox, incorporating namespaces

$$
\mathrm{c}=\text { Core, } \mathrm{q}=\text { Query, } \mathrm{x}=\mathrm{XML} \text {, cont=Context, macro=Macro }
$$

- backengines Magma, GAP, Mathematica, CoCoA
- customization
- examples dependent on user input
- labeled digraph display and manipulation
- context (extended CDs, editor, scoping)

Issues

I. presentation
2. sequences
3. deconstruction
4. application
5. bindings
6. casting

TU/e

1. Presentation

- attributes: style for display
- α-conversion
- sequences

Presentation

style attribute for display

```
<OMA style="sub">
    <OMS cd="group3" name="symmetric_groupn"/>
    <OMI>3</OMI>
</OMA>
renders as \(\mathrm{Sym}_{3}\) but as \(\mathrm{Sym}(3)\) without the style attribute.
```

<OMA><OMS cd="£ns2" name="apply_to_list"/>
<OMA $><$ OMS codnnische universiteit eindhoven
*BIND > <OMS cd="fnsl" name="lambda" / >
<OMBVAR><ONV ndme="X"></OMBVAR>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMV name="x" / >
<OMA $><$ OMS cd="arith1" name="plus" / >
<OMV name="n" / >
<OMA><OMS cd="arith1" name="unary_minus" />
<OMV name="x"/>
$</$ OMA $>$
<OMI>1</OMI> </OMA $>$
</OMA>
</OMBIND>
<OMA><OMS name="integer_interval" cd="interval1"/> <OMI>1</OMI>
<OMA><OMS name="arith1" cd="divide"/> <OMA><OMS name="arith1" cd="minus"/>
<OMV name="n"/> <OMI>1</OMI>
</OMA>
<OMI>2</OMI>
</OMA $\$ department of mathematics and computer science

Presentation, example

```
apply_to_list(permutation,
    map(x -> cycle(x, n-x+1), [1..(n-1)/2])
    )
```

should give $(1, n)(2, n-1) \ldots((n-1) / 2,(n+3) / 2)$
α conversion gives $(1, n-1+1) \ldots((n-1) / 2, n-(n-1) / 2+1)$

Presentation, bad hack
permutation (sequence (cycle(1,2) ,
"...",
cycle($(n-1) / 2,(n+3) / 2)$
)
)
in order to render $(1, n) \ldots((n-1) / 2,(n+3) / 2)$

2. Sequences

A sequence is not a list, but is convenient:

- for notational purposes
- for representing the childrens of a construct

Sequences, notational

$x, y \in \mathbb{Z}$ expressible as

```
<OMA><OMS cd="set1" name="in"/>
    <OMA><OMS cd="sequence1" name="sequence"/>
            <OMV name="x"><OMV name="y">
    </OMA>
    <OMS cd="setname1" name="Z"/>
</OMA>
```


Sequences, representing children

The arguments of $f(x, y)$ are x, y, so alternative to $f(x, y)$ is

```
<OMA><OMV name="f"/>
    <OMA><OMS cd="sequence1" name="sequence"/>
    <OMV name="x"><OMV name="y">
    </OMA>
</OMA>
```

Consider $f\left(x_{1}, \ldots, x_{n}\right)$ instead

3. Deconstruction

Proposal: a CD with symbols like argument

```
<OMA><OMS cd="deconstr1" name="arg"/>
    <OMA> F
    <OMV name="arg1"/> <OMV name="arg2"/> ...
    </OMA>
    <OMI>i</OMI>
</OMA>
```

for an integer i refers to
the i-th argument <OMV name="argi" / > of F.
If $i=0$, then argument (M, i) stands for F .

Deconstruction, bind

For OMBIND, the interpretation of arg might be
<OMA><OMS cd="deconstr1" name="arg"/>
<OMBIND> F
<OMBVAR> v </OMBVAR>
A
</OMBIND>
<OMI>i</OMI>
</OMA>
stands for F if $i=0$, for v if $i=1$ and for A if $i=2$.

Deconstruction, error

For OME, the interpretation of arg might be

```
<OMA><OMS cd="deconstr1" name="arg"/>
    <OME>
        F A
    </OME>
    <OMI>i</OMI>
</OMA>
stands for F if i=0 and for A if i=1.
```


Deconstruction, attribution

For OMATTR the interpretation of arg might be

```
<OMA><OMS cd="deconstr1" name="arg"/>
    <OMATTR>
        <OMATP> P1 P2 P3 P4 ... </OMATP>
        F
```

 </OMATTR>
 <OMI>i</OMI>
 </OMA>
stands for F if $i=0$ and for $\mathrm{P} i$ if $i>0$.

Deconstruction, arguments

The CD might also contain a symbol arguments which, when applied to an OM object M, returns the sequence
$\arg (M, 0), \arg (M, 1), \ldots$

Deconstruction, example

For $4 /(-6)=-2 / 3 \in \mathbb{Q}$ compare $\arg ($ rational $(4,-6), 1)$ which is 4 , with numerator (rational $(4,-6)$) which might be -2 .

Deconstruction, conclusion

For a symbol with role application provide symbol names in the same CD for deconstructors (groupi)

4. Application

Which symbols and variables may play the role of application?

- subscripting
- list entry
- permutation action
- polynomial evaluation

Application, subscripting

```
<OMA style="sub"><OMSTR>a</OMSTR>
    <OMI>127</OMI>
</OMA>
```

```
<0rOMA><OMS cd="indexing" name="indexed_symbol">
```

<0rOMA><OMS cd="indexing" name="indexed_symbol">
<OMSTR>a</OMSTR>
<OMSTR>a</OMSTR>
<OMI>127</OMI>
<OMI>127</OMI>
</OMA>
</OMA>
or, in case of more indices,
or, in case of more indices,
<OMA><OMS cd="indexing" name="indexed_symbol">
<OMA><OMS cd="indexing" name="indexed_symbol">
<OMV name="x"/>
<OMV name="x"/>
<OMI>126</OMI> <OMI>127</OMI>
<OMI>126</OMI> <OMI>127</OMI>
</OMA>

```

\section*{Application, list entry}
```

<OMA>
 <OMA><OMS cd="list1" name="list"/>
 <OMI>3</OMI><OMI>6</OMI><OMI>9</OMI>
 </OMA>
 <OMI>2</OMI>
</OMA>
evaluates to 6

```

\section*{5. Bindings}
- Compare \(\{g(x) \mid f(x) \in A\}\) to \(\{x \in B \mid f(x) \in A\}\) and \(\{g(x) \mid x \in A\}\)
- fnsz.mapsto \(\left(x^{2}: y^{2}: x y\right) \mapsto x y /\left(x^{2}+y^{2}\right)\)

\section*{TU/e}

\section*{6. Casting}
- casting to declare expected types
- casting for efficiency

\section*{TU/e}

Cast an arithmetic expression \(A\) to a polynomial in the ring \(R[x, y]\) polynomial (R[x,y],A)

Casting, efficient data representation
- quotient_ring(R,I), where I = ideal(R,B), or ideal (B,R), or ideal(B)
- polynomial(Ring, term data), where Ring determines the interpretation of term data

Casting, for lists
Rather than
list (modmelt(Zmodm (7), 2), modmelt(Zmodm (7),5), modmelt(Zmodm(7),4), modmelt(Zmodm (7), 3))
want
Flist (Zmodm(7), list(2, 5, 4, 3))
which (here) is equivalent to
map (x -> modmelt (Zmodm (7), x), list (2, 5, 4, 3))
(replace list by matrix or polynomial)

\section*{Conclusion}

OM is very useful for Algebra Interactive

\section*{Conclusion}

Interactive is very useful for OM

\section*{TU/e}

\section*{Thanks}
to the organizers
to the audience```

