
Task: 1.3
Version: 1.3
Date: 1999-04-12

A Small OpenMath Type System

James Davenport

Bath

1.3.2c (Public)
c© 1999 The OpenMath Consortium (24.969)

ESPRIT project 24969: OpenMath

ii A Small OpenMath Type System (Task: 1.3)

ESPRIT project 24969: OpenMath

Abstract

This paper is based on various discussion with the OpenMath Consortium,
and notably recently with the NAG team. All errors are mine. Revised in
the light of discussion at Oxford 4.2.1999.

A Small OpenMath Type System (Task: 1.3) iii

ESPRIT project 24969: OpenMath

iv A Small OpenMath Type System (Task: 1.3)

ESPRIT project 24969: OpenMath

1 Why a “Small Type System”?

Nothing in this document should be inferred as meaning that a Small Type System is
“better” than ECC theoretically: indeed clearly it is not. One should understand “Small”
in the sense of “light-weight”. There are two main uses of a potential Small Type System
for OpenMath signatures.

• Tools which read “new” CDs automatically, e.g. a search engine which suddenly
encountered as a symbol from a CD that it did not recognise. In the context of a
“Small” type system, there is little more that can be offered to such systems than
arity checking.

• Human beings reading the whole of a CD’s fields, to determine how they ought to
implement the CD, either as OpenMath-reading software, or, more interestingly, as
OpenMath-writing software. These humans need to interpret the symbols in a way
that (short of ECC or re-building an Axiom-like category system) cannot be totally
formalised. However they “ought to be” imbued with that nebulous quality of “com-
mon sense”.

To meet these goals, we define a system that encodes arity (and a little more) in a totally
formal way, but leaves clues in names etc. that should help the human reader.

2 Principles

1. A signature is an OpenMath object, and should be encoded as such. Alas, I do
not guarantee that I have got the encodings right, but this is the principle of the
document.

2. Every OMS must appear in a CD. For the sake of specifity, I have chosen a separate
CD, sts, for those symbols specific to the Small Type System. This could clearly be
changed.

3. It is a truism of type theory that a constant can be replaced by a nullary function.
Early precursors of Axiom did this, but this had to be changed, since the pragmatics
of, say, zero (thought of as zero()) and random() are very different. Even equality
cannot be the same. Hence we distinguish between the two. On the same lines,
forcing all functions to have one argument by currying is tempting, but a pragmatic
disaster. This is not to say that a more adventurous type system could not do it, but
this defeats both goals in the introduction at a “Small” level.

4. Clearly n-ary functions must be allowed. However, there are two types of these:
those that simply take n-arguments, and those that are essentially binary associative
functions normally written n-ary. As examples of these

list(1,list(2,3)) 6= list(1,2,3)

A Small OpenMath Type System (Task: 1.3) Page 1 of 6

ESPRIT project 24969: OpenMath

even though list is an n-ary function, but

plus(1,plus(2,3)) = plus(1,2,3)

since plus is also associative. It would be convenient (especially for search engines)
to distinguish the two. Further justification for this view is given in the Appendix.

5. Some names (to be decided, and probably evolving with CD’s) should refer to specific
OpenMath known types, and some cannot be prescribed. For example, it may1 be
convenient to know that the second argument of elt (element of a list) must be a
positive integer, and hence we can say this by writing

<OMS name="PositiveInteger" cd="sts"/>

whereas in other cases we may wish to convey to the human reader that the types
have some generic property that the Small Type System does not formally encode,
e.g. a gcd operation might wish to name its arguments and results without a formal
definition, and therefore use

<OMV name="GCDDomain"/>

In particular, we use

<OMS name="Object" cd="sts"/>

to denote any OpenMath object (as far as the Small Type System is concerned).
6. Function arguments (or results) are first-class objects. This is certainly true of Open-

Math, so should be true of its type system.
7. Parameterised types are probably too complex for the Small Type System. Use ECC

instead!

3 Encoding

This attemps to write a quasi-BNF grammar for the OpenMath encoding of a signature
SIG. I use OMS! as shorthand for an Openmath symbol encoding, (possibly attributed)
and similarly OMV!. Quotation marks ‘’ denote literal OpenMath, except that I quote one
possible order for name= and cd=, but intend both. Similarly, I do not go into the blank
space and comment rules.

1. A rule to represent principles 5 and 6.

OMSV = OMS! | OMV! | APPL

1Or it may not, if we are writing about list algebras. This distinction is actually hard.

Page 2 of 6 A Small OpenMath Type System (Task: 1.3)

ESPRIT project 24969: OpenMath

2. Rules to represent principle 4.

NARYS = ‘<OMS name="nary" cd="sts"/>’ |
‘<OMS name="nassoc" cd="sts"/>’

NARY = ‘<OMA>’
NARYS
OMSV

‘</OMA>’
OMSVN = OMSV | NARY

3. Rule for application2.

APPL = ‘<OMA>’
‘<OMS name="mapsto" cd="sts"/>’
OMSVN*
OMSV

‘</OMA>’

The last OMSV is to be thought of as the target, the rest as source domains. There
also needs to be a side-rule, which I cannot write in BNF, that at most one of the
OMSVN* can be an NARY, the rest must be OMSV.

4. Finally,

SIG = OMS! | OMV! | APPL

(in fact OMSV would do, but this confuses the distiction between constants (the first
two) and functions).

4 Examples

Here I give, as best I can, some examples of this encoding.

zero <OMV name="AbelianMonoid">

random <OMA>
<OMS name="mapsto" cd="sts"/>
<OMS name="Object" cd="sts"/>

</OMA>

2As usual in OpenMath, this is abstract application, and implies no computation.

A Small OpenMath Type System (Task: 1.3) Page 3 of 6

ESPRIT project 24969: OpenMath

minus <OMA>
<OMS name="mapsto" cd="sts"/>
<OMV name="AbelianGroup"/>
<OMV name="AbelianGroup"/>
<OMV name="AbelianGroup"/>

</OMA>

There is an important point of interpretation here. OMVs represent the same object in
a local context3, so this means that minus takes two objects from the same Abelian-
Group, and returns an element of the same AbelianGroup.

list <OMA>
<OMS name="mapsto" cd="sts"/>
<OMA>
<OMS name="nary" cd="sts"/>
<OMS name="Object" cd="sts"/>

</OMA>
<OMS name="Object" cd="sts"/>

</OMA>

This allows for heterogenous lists, but I doubt that the Small Type System is up to
enforcing anything else.

plus <OMA>
<OMS name="mapsto" cd="sts"/>
<OMA>
<OMS name="nassoc" cd="sts"/>
<OMV name="AbelianSemiGroup"/>

</OMA>
<OMV name="AbelianSemiGroup"/>

</OMA>

determinant <OMA>
<OMS name="mapsto" cd="sts"/>
<OMV name="SquareMatrix"/>
<OMV name="CommutativeRing"/>

</OMA>

Note that principle 7 implies that we do not attempt to parameterise the SquareMatrix,
so that the hman reader has to infer that we mean one over the following CommutativeRing.
However, we can convey hints by writing SquareMatrix rather than Matrix, and not
just writing Ring.

3Current meaning an OMOBJ, but I am not pre-empting any change from the DOM work here.

Page 4 of 6 A Small OpenMath Type System (Task: 1.3)

ESPRIT project 24969: OpenMath

5 The Treatment of OMBIND and OMATTRIB

We now have to integrate OMBIND into this construct. The clue is provided by the fact that
a signature with mapsto means, precisely, that that symbol can appear as the head of a
OMA. By analogy, we need a symbol, say binder, to say that a symbol can appear as the
head of a OMBIND.

In addition to being used as the head of OMA or OMBIND, some symbols in a CD may be in-
tended to be used as a ‘key symbol’ in the symbol–value pairs of an OpenMath Attribution.
Such a symbol is specified using the sts symbol attribution.

We therefore augment the grammar given above by the following two clauses:

BIND = ‘<OMA>’
‘<OMS name="binder" cd="sts"/>’
OMV!
OMSV

‘</OMA>’

ATTRIB = ‘<OMA>’
‘<OMS name="attribution" cd="sts"/>’

‘</OMA>’

and change the definition of SIG to be

SIG = OMS!| OMV! | APPL | BIND | ATTRIB

(equivalent to OMSV | BIND | ATTRIB).

A Justification for nassoc

It would be possible not to describe nassoc functions differently from nary ones. This
would be possible if OpenMath were not a semantic system. In particular, the Formal
Mathematical Properties (FMPs) are hard to write. The commutativity of a binary addition
can be addressed, as in arith.ocd, as follows.

<FMP>
<OMOBJ>
<OMBIND>

<OMS cd="quant" name="forall"/>
<OMBVAR>

<OMV name="a"/>
<OMV name="b"/>

A Small OpenMath Type System (Task: 1.3) Page 5 of 6

ESPRIT project 24969: OpenMath

</OMBVAR>
<OMA>

<OMS cd="relation" name="eq"/>
<OMA>
<OMS cd="arith" name="plus"/>
<OMV name="a"/>
<OMV name="b"/>

</OMA>
<OMA>
<OMS cd="arith" name="plus"/>
<OMV name="b"/>
<OMV name="a"/>

</OMA>
</OMA>

</OMBIND>
</OMOBJ>
</FMP>

However, this does not even state that a ternary plus could be commutative in the first two
arguments, and certainly does not state that, say, a+ b+ c = a+ c+ b.

A similar problem is posed by associativity: one can write a property equivalent to a+ (b+
c) = (a+ b) + c, but again this does not cover n-ary functions. It would be possible to cope
with ternary usages, e.g. by writing an FMP equivalent to (a+b)+c = a+b+c = a+(b+c),
but even this would not cope with quaternary usages, as in a+ b+ c+ d.

There is a fundamental dichotomy between allowing n-ary operations for notational and
practical convenience, on the one hand, and a formal semantics system, which generally
only allows operations of fixed arity. Treating such operations as “special” is the easiest
way of solving this.

Page 6 of 6 A Small OpenMath Type System (Task: 1.3)

	Why a ``Small Type System''?
	Principles
	Encoding
	Examples
	The Treatment of OMBIND and OMATTRIB
	Justification for nassoc

